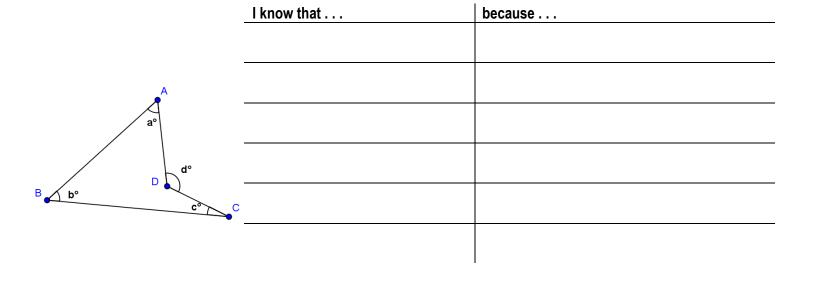
□ DO	NOW – Geometry Regents Lomac 2014-2015 Date	ı 	due A	angles: Writing Proofs 3.6
angle	ke 3 sketches: one that shows corresponding es, one that shows alternate interior angles, and one shows alternate exterior angles.	Name LO:		Per nes to diagrams and use to prove statements.
transparen cies, dry erase markers, erasers compass	Angles: Exterior angle theorem: Proof by construction Prove that the measures of angles B and E are equential Extend lines or add auxiliary lines to help you.	ual.	allel line.	C P F E
	Brianna's diagram G G B B B B B B B B B B B		<u>T</u>	ramaine's diagram
	Describe Brianna's additions to the diagram		Describe Tramai	ne's additions to the diagram
	Brianna says she can use alternate interior angles	to write h	ner proof. Do you agre	ee with her? Why or why not?
	☐ Tramaine says he can use corresponding angles to	o write hi	s proof. Do you agree	e with him? Why or why not?
	because because	the proof		the measure of angle E. Add
В	E			

			3.6
<u>(2)</u>	Angles: Proving relationship	os	A X° B
transparen cies, dry	☐ The diagrams that Brianna	and Tramaine could BOTH be used to write the proof.	
erase markers,	Like problem #1, there is n	nore than one way to add to the diagram at right	z°
erasers	to prove the statement be	low. Given: $\overline{AB} \parallel \overline{CD}$	C
		Prove: $z = x + y$	y°
	The three diagrams below hav	e different extensions or auxiliary lines drawn. Add the le	etters a and b to each
	diagram to help you write the p	•	
		THINK: Angle z is an interior/exterior (circle one) ar	ngle of the triangle formed.
Δ	X° B	An angle of a triangle is eq	•
•			
		the remote interior angles to be the same measures as	•
	∠ z°	can prove that $z = x + y$	
С		☐ PROOF:	
•	(1) a = x because the angles are corresponding (add a to the diagram)		
		(2) b = y because they are vertical (add b to the diagrar	n)
		(3) = z because of the	thrm.
		(4) + = z because equal values can be so	ubstituted.
	,		
A	x° B	THINK: Angle z is an interior/exterior (circle one) are	ngle of the triangle formed.
•	·	An angle of a triangle is eq	ual to the sum of the
			angles. If we can get
	z°	the remote interior angles to be the same measures as	and, then we
С	D	can prove that $z = x + y$	
	y° ·	☐ PROOF:	
	`	(1) a = x because the angles are	(add a to the diagram)
		(2) b = y because they	(add b to the diagram)
		(3) + = z because of the	theorem.
		(4) + = z because equal values can be _	·
A	x° B	THINK: Angle z is composed of adjacent an	gles. If we can prove that
		one of the angles is congruent to and the other is	
		we can prove that $z = x + y$	-
	Z°	☐ PROOF:	
C	D	(1) a = x because the angles are	(add a to the diagram)
	y°	(2) b = y because the angles are	
		(3) + = z because the measure of an angl	e is equal to the sum of the
		angles that make up the large	er angle.
		(4) + = z because	

[] (3) large dry erase problems

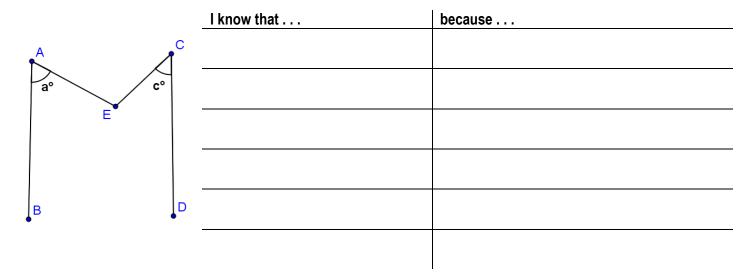

Angles: Proving Relationships

Prove each statement below. You may or may not need to draw an auxiliary line.

 \square (a) In the figure, $AB \parallel CD$ and $BC \parallel DE$. Prove that $\angle ABC = \angle CDE$.

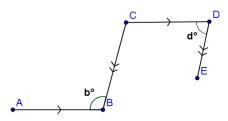
	I know that	because
$\stackrel{D}{\longleftrightarrow} E$		
_		
B C		
A		

 \square (b) In the figure, prove that d = a + b + c.

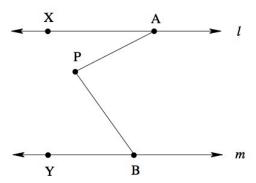


(3)	Angles: Proving Relationships
cont.	

 \square (c) In the figure, $AB \parallel DE$ and $BC \parallel EF$. Prove that $\angle ABC = \angle DEF$.

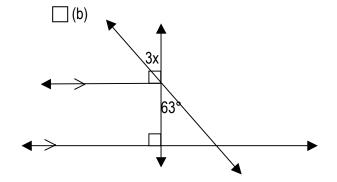

	I know that	because
A D		
<i>/ /</i>		
F		
B		
C		

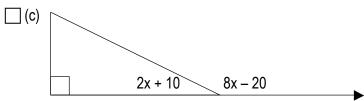
 \square (d) In the figure, $AB \parallel CD$. Prove that $\angle AEC = a + c$

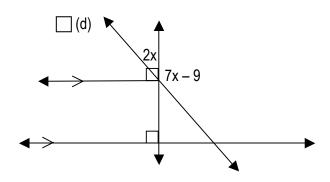

(4) Exit Ticket

In the figure, $AB \parallel CD$ and $BC \parallel DE$. Prove that b + d = 180.

(5) Homework


 \square (1) PROVE: \angle XAP + \angle YBP = \angle APB


I know that . . . because . . .


 \square (2) Find the measure of x in each diagram. State a reason for each step that you take.

